
Computational Science Minor - Page 1

Credit Hour Explanation

Program Learning Goals

Note: these are required for all undergraduate degree programs and majors now, and will be required for all graduate and professional degree programs in
2012. Nonetheless, all programs are encouraged to complete these now.

Assessment

Assessment plan includes student learning goals, how those goals are evaluated, and how the information collected is used to improve student learning. An
assessment plan is required for undergraduate majors and degrees. Graduate and professional degree programs are encouraged to complete this now, but will
not be required to do so until 2012.

Is this a degree program (undergraduate, graduate, or professional) or major proposal? No

Program Specializations/Sub-Plans

If you do not specify a program specialization/sub-plan it will be assumed you are submitting this program for all program specializations/sub-plans.

Pre-Major

Does this Program have a Pre-Major? No

Status: PENDING PROGRAM REQUEST
Computational Science Minor

Last Updated: Heysel,Garett Robert
09/13/2013

Fiscal Unit/Academic Org ASC Administration - D4350

Administering College/Academic Group Arts and Sciences

Co-adminstering College/Academic Group

Semester Conversion Designation New Program/Plan

Proposed Program/Plan Name Computational Science Minor

Type of Program/Plan Undergraduate minor

Program/Plan Code Abbreviation

Proposed Degree Title

Program credit hour requirements A) Number of credit hours
in current program (Quarter

credit hours)

B) Calculated result for
2/3rds of current (Semester

credit hours)

C) Number of credit hours
required for proposed

program (Semester credit
hours)

D) Change in credit hours

Total minimum credit hours required for
completion of program 18

Required credit hours
offered by the unit Minimum

Maximum

Required credit hours
offered outside of the unit Minimum

Maximum

Required prerequisite credit
hours not included above Minimum 10

Maximum 22

Program Learning Goals The program goals are to provide the students with competencies related to the application of computer modeling to

science and social science research and practice. This includes an understanding of the principles and practice of

computer modeling,

•

Computational Science Minor - Page 2

Status: PENDING PROGRAM REQUEST
Computational Science Minor

Last Updated: Heysel,Garett Robert
09/13/2013

Attachments minorprogramproposalarts_v5CA rev2.doc

(Program Proposal. Owner: Hanlin,Deborah Kay)

•

Minor Program Form -compscienceCArev1.doc

(Other Supporting Documentation. Owner: Hanlin,Deborah Kay)

•

Comments Unit is working on revisions (by Vankeerbergen,Bernadette Chantal on 08/30/2013 01:18 PM)•

Workflow Information Status User(s) Date/Time Step

Submitted Hanlin,Deborah Kay 06/12/2013 12:13 PM Submitted for Approval

Revision Requested Vankeerbergen,Bernadet
te Chantal 06/12/2013 03:41 PM Unit Approval

Submitted Hanlin,Deborah Kay 06/12/2013 03:55 PM Submitted for Approval

Approved Vankeerbergen,Bernadet
te Chantal 06/12/2013 04:21 PM Unit Approval

Approved Heysel,Garett Robert 06/13/2013 11:48 PM College Approval

Revision Requested Vankeerbergen,Bernadet
te Chantal 06/27/2013 09:46 AM ASCCAO Approval

Submitted Hanlin,Deborah Kay 06/27/2013 09:55 AM Submitted for Approval

Approved Vankeerbergen,Bernadet
te Chantal 06/27/2013 09:56 AM Unit Approval

Approved Carlson,Wayne Earl 06/28/2013 08:50 AM College Approval

Revision Requested Vankeerbergen,Bernadet
te Chantal 08/30/2013 01:18 PM ASCCAO Approval

Submitted Hanlin,Deborah Kay 09/13/2013 09:29 AM Submitted for Approval

Approved Vankeerbergen,Bernadet
te Chantal 09/13/2013 10:25 AM Unit Approval

Approved Heysel,Garett Robert 09/13/2013 07:54 PM College Approval

Pending Approval

Vankeerbergen,Bernadet

te Chantal

Nolen,Dawn

Jenkins,Mary Ellen Bigler

Hogle,Danielle Nicole

Hanlin,Deborah Kay

09/13/2013 07:54 PM ASCCAO Approval

Proposal for an Arts and Sciences Minor Program in Computational Science

Introduction

Computational science describes the application of computing, especially high performance computing, to the
solution of scientific and technical problems. Computational scientists use computers to create mathematical
models that help them simulate and understand the operation of natural and mechanical processes, as well as to
visualize the operation and results of these models.

Computational science (i.e., science in-silico) has become a third way of advancing knowledge along with the
traditional methods of theory and experimentation. In-silico simulations and modeling afford the opportunity to
"see" the unattainable – phenomena that are too small (atoms and molecules), too large (galaxies and the
universe), too fast (photosynthesis), too slow (geological processes), too complex (automobile engines), or too
dangerous (toxic materials). In recent years, computational studies have produced enormous advances in almost
all fields of scientific and engineering inquiry, including DNA sequencing, behavioral modeling, global climatic
predictions, drug design, financial systems, and medical visualization.

A number of institutions both within and outside Ohio have initiated minor programs in computational science
in recognition of its increasing importance in science and engineering research and applications. The proposed
minor program focuses on providing the relevant expertise in the principles of modeling and simulation,
computer science skills in programming, and related mathematics and analytics concepts. A similar minor
program in engineering at OSU was approved last year and went into operation in the 2012-2013 academic
year.

The basic requirements of this minor program are guided by a document associated with the Ralph Regula
School of Computational Science, which was established as a “virtual school” by the Ohio Board of Regents in
December 2005. RRSCS is a run from the Ohio Supercomputer Center and does not offer degrees of its own but
serves to organize and coordinate statewide efforts to integrate computational science programs into the
curricula at participating institutions, one of which is OSU. Computational science and engineering is an
interdisciplinary field with expertise scattered among different departments and different institutions—though
OSU offers expertise and coursework in all these areas. The intention of RRSCS is to sponsor shared, inter-
institutional programs that take advantage of the existing expertise, make it widely available, and limit the
duplication of effort and expense where possible. For completeness, and to answer any questions that might
arise about this unusual aspect of this program, the full proposal for the just approved minor program is
provided as Attachment B. One change in the previously approved minor is to make the “optimization” course
an elective rather than a requirement. This keeps the total credit hours upon conversion to semesters within the
desired range.

A faculty committee represented by several of the participating departments will oversee the minor program.
Greg Kilcup from the Department of Physics has agreed to serve as the first chair of this committee. Two other
committee members will be solicited from the other participating departments. It is anticipated that committee
membership will rotate to involve participating faculty from all related departments over time. They will
review proposed exceptions to the course requirements for students and also periodically review the program
and recommend updates and amendments. The committee will also review proposals for research and
internship experiences from the participating students to ensure that those experiences meet the intended
practical experience in the use of computational modeling techniques.

Enrollment in the minor program is expected to be modest with approximately 10-15 students per year.

Overview of the Minor Curriculum

The skills underlying the minor program curriculum are based on the results of a National Science Foundation
grant that created competencies in computational science for undergraduate students. An interdisciplinary team
consisting of faculty from all of the related disciplines created the competencies as a part of the grant outcomes.
That included a number of faculty from OSU. Subsequently, the competencies have been reviewed by an
industry advisory committee and by a number of computational science experts at institutions nationwide. The
competencies are available online at http://hpcuniversity.org/educators/undergradCompetencies/ and are also
attached as Appendix A.

The proposed minor curriculum consists of five required courses and at least one elective. These are shown in
Table 1. All students are required to take a year of calculus, which is part of the current requirements for the
target major fields. Calculus could be taken concurrently with the introductory modeling and simulation course,
but is a prerequisite for the other courses. The courses are described in the table of competencies shown in
Appendix A.

Coursework Requirements
The Computational Science minor requires the completion of at least 18 credits of approved coursework,
including a required course in each of five designated areas and one elective, as summarized in Table 1.

Required Courses

1) Simulation and Modeling: An introductory course on the use of models (continuous and discrete) and
simulation in science and engineering. An introductory course of this nature is being added by Computer
Science and Engineering as CSE 2021. The course is aimed at Arts and Sciences majors with no previous
computer science experience. There are also several related courses in engineering that meet this requirement
for students with more advanced skills.

2) Programming and Algorithms: A course on computer programming and the use of a programming
language for problem solving is the second required course. There are two Computer Science and Engineering
courses that currently meet this requirement.

3) Numerical Methods: An applied introduction to use of numerical methods in solving linear and nonlinear
equations, interpolation, numerical solution of differential equations. There are several mathematics and
engineering courses that meet this requirement.

5) Capstone Research/ Internship Experience: Each student must complete a guided research project or
internship on a computational topic. The mechanism used to satisfy this requirement may differ across
departments – e.g. computationally oriented senior design project or honors thesis, or a computationally
oriented independent research study with a faculty member at Ohio State, or internship experience with an
external agency or company that meets the goals of this requirement. Credit will be given through available
independent studies or research course designations.

The faculty oversight committee will review proposals for the capstone research experience to ensure that they
meet the intended purpose of this requirement.

6) Discipline-Specific Course: Any approved computationally oriented course from the student’s major
discipline. Currently there are related courses in biomedical informatics, chemistry, economics, geography,
linguistics, mathematics, microbiology, physics, and psychology.

http://hpcuniversity.org/educators/undergradCompetencies/

7) Optional course: Students then have the option of taking one of several courses as an elective. These
include additional mathematics courses, courses in parallel programming, scientific visualization, or
optimization. Other options may be considered in more advanced modeling and simulation, data management,
or other related areas by petition.

 Topic Course Credit

Hours Terms offered Required/
Elective

Prerequisites Calculus
MATH 1151.xx 5 Au, Sp

MATH 1152.xx or Math 1172 5 Au, Sp

Core Courses

Simulation and Modeling
(Choose one of these courses)

MATH 1157 3 Sp

Required

CSE 2021 3 Sp

ISE 5100 3 Au, Sp

ME 5372 3 Au

MATSCEN 4321 3 Au

Programming and Algorithms
(Choose one of these courses)

CSE 1222 3 Au, Sp
Required

CSE 2221 4 Au, Sp, Su

Numerical Methods
(Choose one of these courses)

AERO 3581 3 Au

Required

CSE 5361 3 Au, Sp

ECE 5510 3 Au

MATH 3607 3 Sp

MATH 5401 3 Sp

MECHENG 2850 3 Au, Sp

Discipline Specific
Courses

Capstone Research/Internship
Experience (minimum 3 credits)

CIVILEN 4000.01 2 Au, Sp

Required
Any individualized research
courses. I.E.: MATH 4998;
CHEM 4998 or other approved
individualized research credits **

3-5 Au, Sp, May, Su, May
+ Su/ Au, Sp/Au, Sp

Discipline-specific
Computationally oriented Course

CSE 3521 3 Au, Sp

Required

CSE 3341 3 Au, Sp

MICRBIO 5161H 3 N/A

BMI 5730 3 Sp

CHEM 5440 3 Au

MATH 5651 3 Sp

PHYS 6810 4 Sp

LING 5801 3 Au

LING 5802 3 Sp

ECON 4050 3 Au, Sp

ECON 5001 3 Au, Sp

GEOG 5221 3 Au

PSYCH 5608 or 5609 or 5618 3 Sp

EARTHSC 5642 3 Sp

Elective: Choose at least
one course from the
following (3 credits total
required)

Differential Equation and Discrete
Dynamical Course

MATH 2255 3 Su, Au, Wi, Sp

Elective MATH 2415 3 Su, Au, Wi, Sp

MATH 2568 3 Su, Au, Wi, Sp

Parallel Programming CSE 5441 3 Au Elective

Scientific Visualization CSE 5544 1-5 Su, Au, Wi, Sp Elective

Optimization

CEG (CIVILEN) 4760 3 Sp

Elective
ECE 5759 3 Au

ISE 3200 3 Au, Sp

MATSCEN 4181 3 Au

 Total minimum credit hours: 18

** A proposal for the individual research project must be submitted in advance of the research experience,
and then approved by the Faculty Oversight Committee for the minor program.

The Ohio State University
College of Arts and Sciences

Computational Science Minor

Arts and Sciences Advising and Academic Services
100 Denney Hall
164 West 17th Avenue
Columbus, OH 43210
http://ascadvising.osu.edu

The minor in computational science consists of a
minimum of 18 credit hours of course work:
Computer Science and Engineering (CSE) 2021,
either CSE 1221 or 2221, a numerical methods
course (CSE 5361, ECE 5510, MATH 3607,
MATH 3401, or ME 2850), a capstone research or
internship using an approved departmental research
course designation, one discipline specific
computational modeling course (CHEM 5440,
MICROBIO 5161H, CSE 3521, CSE 3341, BMI
5730, MATH 5651, PHYS 6810, LING 5801,
LING 5802, ECON 4050, ECON 5001, GEOG
5221, PSYCH 5608, PSYCH 5609, or PSYCH
5618), and one elective (MATH 2255, MATH
2415, MATH 2568, CSE 5441, CSE 5544, CEG
4760, ECE5759, ISE 3200, or MATSCEN 4181).
Of these courses, at least 12 credit hours must be at
the 2000 level or above.

After the Arts and Sciences advisor has approved
your Minor Program Form, you should file the form
with your college or school counselor. For further
information about the minor program, contact ASC
advising.

Computational Science Minor Program
Guidelines

The following guidelines govern this minor.

Required for graduation No

Credit hours required A minimum of 18. Of these,
at least 12 credit hours must be at the 2000 level or
above.

Transfer credit hours allowed No more than one
half of the credit hours required on the minor.

Overlap with the GE Permitted, unless specifically
disallowed by an individual minor program.

Overlap with the major Not allowed and
• The minor is interdisciplinary and is available for
any major in Arts and Sciences.
• The same courses cannot count on the minor and
on the major.

Overlap between minors Each minor completed
must contain 12 unique hours.

Grades required
• Minimum C– for a course to be listed on the
minor.

• Minimum 2.00 cumulative point-hour ratio
required for the minor.

• Course work graded Pass/Non-Pass cannot count
on the minor.

Approval required The minor program should be
approved by an advisor in ASC Advising or your
departmental advisor in ASC. Requests to include
in the minor any courses not listed herein must be
submitted to the coordinator of the minor program
Greg Kilcup, Department of Physics,
kilcup.1@osu.edu.

Filing the minor program form The minor program
form must be filed at least by the time the
graduation application is submitted to a college or
school counselor. You should plan to file the form
as soon as you have decided to pursue the minor.

Changing the minor program Once the minor
program is filed in the college office, any changes
must be approved by an ASC advisor or the
coordinator of the program.

Appendix A

Computational Science Minor Program
Competencies

Minor Program in Computational Science

Competency/Topic Overview
Area 1: Simulation and Modeling

Competency/Descriptors
Explain the role of modeling in science and engineering
Descriptors:
Discuss the importance of modeling to science and engineering
Discuss the history and need for modeling
Discuss the cost effectiveness of modeling
Discuss the time-effect of modeling (e.g. the ability to predict the weather)
Define the terms associated with modeling to science and engineering
List questions that would check/validate model results
Describe future trends and issues in science and engineering
Identify specific industry related examples of modeling in engineering (e.g., Battelle;

P&G, material science, manufacturing, bioscience, etc.)
Discuss application across various industries (e.g., economics, health, etc.)
Analyze modeling and simulation in computational science
Descriptors:
Identify different types of models and simulations
Describe a model in terms of iterative process, linking physical and virtual worlds and

the science of prediction
Explain the use of models and simulation in hypothesis testing (e.g. scientific method)
Create a conceptual model
Descriptors:
Illustrate a conceptual modeling process through examples
Identify the key parameters of the model
Estimate model outcomes
Utilize modeling software and/or spreadsheets to implement model algebraic equations
(e.g. Vensim, Excel, MATLAB, Mathematica)
Construct a simple computer visualization of the model results (e.g. infectious disease
model, traffic flow, etc.)
Validate the model with data
Discuss model quality and the sources of errors
Examine various mathematical representations of functions
Descriptors:
Describe linear functions
Define non-linear functions (e.g., polynomials, exponential, periodic, parameterized,
etc.)
Visualize functions utilizing software (e.g. Excel, Function flyer, etc.)
Determine appropriate functional form to fit the data
Demonstrate essential mathematical concepts related to modeling and simulation
Analyze issues in accuracy and precision
Descriptors:
Describe various types of numerical and experimental errors
Explain the concept of systematic errors
Explain the concept of data dependent errors
Illustrate calculation and measurement accuracy
Identify sources of errors in modeling and approaches to checking whether model results

 7

are reasonable

Understand discrete and difference-based computer models
Descriptors:
Explain the transition of a continuous function to its discrete computer representation
Represent “rate of change” using finite differences
Cite examples of finite differences
Explain derivatives and how they relate to model implementation on a computer
Write pseudo-code for finite difference modeling
Demonstrate computational programming utilizing a higher level language or
modeling tool (e.g. Maple, MATLABTM, Mathematica, other)
Descriptors:
Describe the system syntax (e.g., menus, toolbars, etc.)
Define elementary representations, functions, matrices – arrays, script files, etc.
Explain programming and scripting processes (e.g., relational operations, logical
operations, condition statements, loops, debugging programs, etc.)
Create tabular and visual outputs (e.g., 2-D and 3-D subplots)
Translate the conceptual models to run with this system and assess the model results
(e.g. traffic flow and/or “spread of infectious disease”)
Illustrate other people’s models utilizing the modeling program
Assess computational models
Descriptors:
Assess problems with algorithms and computer accuracy
Discuss techniques and standards for reviewing models
Verify and validate the model
Discuss the differences between the predicted outcomes of the model and the computed
outcomes and relevance to the problem
Discuss the suitability and limits of the model to address the problem for which the
model was designed
Build event-based models
Descriptors:
Describe event-based modeling (e.g. SIMULINKTM; Extend, ARENA)
Run existing models
Translate conceptual models (e.g., traffic flow utilizing SIMULINKTM)
Complete a team-based, real-world model project
Descriptors:
Identify a problem, create mathematical model and translate to computational modeling
Organize and present project proposal
Document model development and implementation
Collaborate with team members to complete the project
Demonstrate technical communication
Descriptors:
Demonstrate technical writing skills in the comprehensive report
Demonstrate verbal communication skills in an oral presentation
Create and present visual representation of model and results
Address all components of a comprehensive technical report
Respond to peer review

 8

Minor Program in Computational Science
Competency/Topic Overview

Area 2: Programming and Algorithms

Competency/Descriptors
Describe the fundamentals of problem solving
Descriptors:
Understand Top-Down thinking and program design
Discuss breaking up a problem into its component tasks
Understand how tasks acquire data
Describe how tasks should be ordered
Represent tasks in a flow-chart style format
Understand the difference between high-level languages (for example Mathematica,
Maple or MATLAB), medium level languages (for example FORTRAN or C) and low-
level languages (assembler) and when each should be used.
Understand and write Pseudo code
Descriptors:
List the basic programming elements of Pseudo code
Explain the logic behind an if/then/else statement
Understand the iterative behavior of loops
Describe the difference between several looping constructs
Write Pseudo code to solve basic problems
Understand how to represent data flow in and out of subprograms.
Use subprograms in program design
Descriptors:
Describe how logical tasks can be implemented as subprograms
Understand the logical distinction between functions and subroutines
Explain the control flow when a function is called
Define dummy and actual arguments
Discuss the different relationships dummy and actual arguments
Explain how function output is used
Understand how languages handle passed data into functions and subprograms,
especially one and two dimensional arrays.
Write code in a Programming language
Descriptors:
Understand the concept of syntax in a programming language
Describe the syntax of the programming language constructs
List the type of subprograms available in the language
Explain the concepts of argument pass-by-value and pass-by-reference
Understand what a compiler and linker do
Understand the difference between a compiled and interpreted language
Understand the difference between a typed and an un-typed language
Understand the difference between a source file and an executable file
Write and run basic programs in the language of choice
Understand how to de-bug code and how to”sanity check” code.
Understand the importance of user-interfaces: clear input instructions including physical
units if needed and clearly formatted and labeled output
Understand the numerical limits of various data types and the implications for numerical
accuracy of results.
Use different approaches to data I/O in a program

 9

Descriptors:
Explain the advantages and disadvantages of file I/O
Describe the syntax for file I/O in your programming language
Compare binary and ASCII file I/O
Write code using file I/O and keyboard/monitor I/O
Understanding and use of fundamental programming Algorithms
Descriptors:
Explain an algorithm as an ordered series of solution steps
Describe an algorithm for a simple programming problem
Learn and use “classic” programming algorithms from a field of interest to the student.
If possible, these should be algorithms used in the student’s discipline.
Describe what a software library is
Understand how library functions implement algorithms
Write code to implement your own version of “classic” algorithm
Compare with code using a library function
Understand data flow into library functions and implications of selecting any “tuning
parameters” or options that may be required.
Explain various approaches to Program Design
Descriptors:
Describe Functional decomposition (Top-down Problem Solving)
Be familiar with different programming styles (e.g. function, procedural, rule based)
Understand how to modularize code
Understand the benefits of code re-use
Explain the operation of a Boss-Worker design
Compare designs based on Global Variables vs. self-contained functions
Define Object-Oriented Programming (OOP)
Contrast OOP with functional decomposition
Explain the power of Inheritance in OOP
Understand how to document code
Understand how to write and when to use stubs and drivers.

 10

Minor Program in Computational Science
Competency/Topic Overview

Area 3: Differential Equations and Discrete Dynamical Systems

Competency/Descriptors
Describe the solution methodology for first order linear differential and difference

equations
Descriptors:
Analyze modeling problems with first order differential equations and present their
solution methodology (e.g. liner, homogeneous, exact)
Analyze modeling problems with first order difference equations and present their
solution methodology (e.g. homogeneous, non-homogeneous). Analyze long term
behavior

Describe the solution methodology for systems of linear first order differential and

difference equations
Descriptors:
Describe modeling problems with systems of first order differential equations and
present their solution methodology (e.g., homogeneous with constant coefficients,
variation of parameters)
Describe modeling problems with systems of first order difference equations and their
solution methodology (e.g., homogeneous with constant coefficients)

Describe the solution methodology for higher order differential and difference

equations
Descriptors:
Describe modeling problems with higher order differential equations analyze their
solution methodology (e.g., homogeneous, non-homogeneous, undetermined
coefficients, variation of parameters)
Describe modeling problems with higher order difference equations analyze their
solution methodology (e.g., homogeneous, non-homogeneous). Analyze the long-term
behavior.

Describe the solution methodology for differential equations using the Laplace

Transforms
Descriptors:
Discuss the Laplace transformation of (e.g., continuous , discontinuous, delta and
convolution) functions
Describe modeling problems with differential equations and present their solution
methodology using Laplace transformations (use of CAS, Maple, Mathematica)

Describe the solution methodology for non-linear differential equations
Descriptors:
Describe the concept of an equilibrium point
Model with non-linear differential equations and present the phase –portrait analysis
Understand and demonstrate how chaos is generated in the solution process of non-
linear differential equations.

Describe the solution methodology for non-linear difference equations
Descriptors:

 11

Describe the method of linearization
Describe the concepts of Logistic and Henon Maps
Model with non-linear difference equations and demonstrate understanding of
fundamental concepts from Bifurcation theory (e.g., fixed, periodic points, chaos)
Describe techniques for controlling chaos
Understand concepts of numerical accuracy applied to each solution approach

 12

Minor Program in Computational Science
Competency/Topic Overview
Area 4: Numerical Methods

Competency/Descriptors
Understand number representation and computer errors
Descriptors:
Understand the pros and cons of floating point and integer arithmetic
Describe various kinds of computing errors (e.g., round-off, chopping)
Describe absolute, relative error and percent error
Discuss error propagation
Describe loss of significance – methods to avoid loss of significance
Analyze methods for solving non-linear equations
Descriptors:
Discuss and contrast fixed point methods (e.g., bisection, secant, Newton’s) for a single
equation
Describe a fixed point method for a system of equations (e.g., Newton’s)
Describe techniques for solving systems of linear equations
Descriptors:
Describe the naïve Gauss elimination and the partial pivoting method
Understand the concepts of condition number and ill-conditioning problems
Discuss and contrast factorization methods (e.g., LU, QR, Cholesky, SVD)
Discuss and contrast iterative methods (e.g., Jacobi, Gauss Siedel)
Describe convergence and stopping criteria of iterative methods
Analyze techniques for computing eigenvalues—eigenvectors (Optional)
Descriptors:
Describe and give examples of eigenvalue –eigenvector problems using specific, applied
examples and their significance
Describe canonical forms of matrices
Describe and contrast direct methods for computing eigenvalues (e.g., power method,
inverse power method)
Describe and contrast transformation methods (e.g., QR algorithm)
Describe interpolation and approximation methods
Descriptors:
Describe and contrast interpolation methods (e.g., Lagrange, Chebyshev, FFT)
Describe interpolation with spline functions (e.g., piecewise linear, quadratic, natural
cubic)
Discuss approximation using the method of least squares (linear .vs. non-linear)
Describe numerical methods for Ordinary Differential Equations
Descriptors:
Describe and compare basic methods for IVPs (e.g., Euler, Taylor, Runge-Kutta)
Describe and compare predictor-corrector methods
Describe and compare multistep methods
Discuss and contrast numerical methods for BVPs (e.g., shooting method, finite
difference method)
Compare the accuracy, memory requirements, and precision of each of the approaches
Describe numerical methods for Partial Differential Equations
Descriptors:
Describe and compare numerical methods for parabolic PDEs (e.g., finite difference,
Crank-Nicolson)

 13

Describe numerical methods for hyperbolic PDEs
Describe numerical methods for elliptic PDEs (e.g. finite difference, Gauss-
Seidel)
Discuss the finite element method for solving PDEs
Describe Monte Carlo Methods
Describe applications of Monte Carlo models with examples
Discuss algorithms for Monte Carlo methods

Minor Program in Computational Science

Competency/Topic Overview
Area 5: Optimization

Describe and use Optimization techniques
Descriptors:
Describe and contrast unconstrained optimization methods (e.g., Golden section search,
Steepest descent, Newton’s method, conjugate gradient, simulated annealing, genetic
algorithms)
Describe and contrast constrained optimization methods (e.g., Lagrange
multiplier, quasi-Newton, penalty function method
Implement linear and non-linear programs
Analyze linear programming methods (e.g., simplex method)
Describe non-linear programming methods (e.g., interior, exterior, mixed methods)
Demonstrate ability to correctly use software systems (e.g., Matlab, IMSL, NAG) to
solve practical optimization problems

 14

Minor Program in Computational Science
Competency/Topic Overview

Area 6: Parallel Programming

Competency/Descriptors
Describe the fundamental concepts of parallel programming and related

architectures
Descriptors:
Describe the differences between distributed and shared memory architectures
Describe the difference between domain and functional decomposition in parallel
Describe a parallel programming approach to an introductory problem
Compare parallel, distributed, and grid computing concepts
Demonstrate parallel programming concepts using MPI
Descriptors:
Describe the MPI programming model
Create, compile, and run an MPI parallel program
Create MPI programs that utilize point-to-point communications
Create an MPI program that uses point-to-point blocking communications
Create an MPI program that uses point-to-point non-blocking communications
Create an MPI program that uses collective communications
Create an MPI programs that use parallel I/O
Create MPI programs that use derived data types
Create MPI programs that use vector derived data type
Create MPI programs that use structure derived data type
Demonstrate knowledge of parallel scalability
Descriptors:
Use mathematical formulas to determine speed-up and efficiency metrics for a parallel
algorithm.
Demonstrate the use of graphical systems such as MATLAB to display speed-up and
efficiency graphs
Demonstrate knowledge of parallel programming libraries and tools
Descriptors:
Demonstrate the use of performance tools for profiling programs (e.g., GNU GPROF or
MATLAB profiler)
Create parallel programs with calls to parallel libraries (e.g. BLAS, BLACS,
ScaLAPACK or FFTW)
Demonstrate the use of MPI tracing tools (e.g., VAMPIR) to determine parallel
performance bottlenecks

 15

Minor Program in Computational Science
Competency/Topic Overview

Area 7: Scientific Visualization

Competency/Descriptors
Define SciVis needs; relationships to human visualization; basic techniques
Define Scientific Visualization (Sci Vis)
Discuss needs of SciVis (in the framework of a large variety of possible application
areas)
Survey different platforms for Visualization (e.g. AVS, VTK, OpenGL, VRLM)
Discuss the different techniques and visualization methods used in SciVis
Explain the human visualization system – capabilities and perceptions
Explain the different steps in the visualization pipeline
Discuss different sources of data for SciVis and explain the terms applied to data types
(i.e. scalar, vector, normal, tensor)
Discuss different types of grids (e.g., regular vs. irregular grids)
Discuss the different methods used to gather data
Describe and explore the use of different file formats for sharing data (netCDF, XML,
TIFF, GIF, JPEG, Wavefront OBJ)
Discuss limitations of different methods
Discuss future applications in emerging fields
Metadata needs for graphics libraries
Overview of computer graphic concepts
Descriptors:
Overview of SciVis concepts (pixels, rgb colors, 3D coordinate system, mapping 3D
data to a 2Dscreen, continuous vs. discrete)
Discuss polygonal representation
Discuss lighting/shading
Overview of classification/segmentation and transfer functions
Discuss concept of rendering pipeline (no details about matrices)
Discuss hardware rendering (mainly for polygonal models, few specialized volumetric
hardware cards)
Identify terms used in virtual space and in graphics elements
Navigate in virtual space and manipulate primitive objects
 Transform: scale, rotate, translate)
 Manipulate surface
 Manipulate lighting and camera
Explore colormaps and examine conceptual definitions for different color maps
(pertaining to color spaces HSV, RGB, etc.) as related to representing data and
relationships to perception
Describe approaches to visualization for different scientific problems

Descriptors:
Examine different computational solutions to scientific problems
Explain the different techniques used in visualization (i.e. glyphs, iso-contours,
streamlines, image processing, volume-data)
Examine the application of problems to visualization techniques
Utilize software tools to implement visual image of a solution
Discuss the use of time in animation
Utilize software to implement grid representations of data
Descriptors:

 16

Identify the various cell representations (i.e. points, polygons, 3d geometries)
Discuss the application to different grid types (i.e. structured, unstructured, random)
Discuss raycasting methods and texture mapping
Examine the details of raycasting sampling (FAT(low resolution sampling),
interpolation techniques).
Examine algorithms: Direct Composite, SFP, use of transparency.
Identify the grid representation and data(color reps.) (regular grids, 1, 8, 24 and 32 bit
color information)
Discuss algorithms for manipulating images, distortion, fft's, enhancement, restoration,
frequency domains
Utilize software to implement different grid types
Discuss limitations of grids
Use visualization software to display an isosurface

Descriptors:
Discuss different data types used: scalar vs. vector data
Discuss the different grid types
Discuss the different algorithms (Marching Cubes etc)
Introduce details of the system being used in a course (e.g., VTK, AVS, etc.)
Apply the system to extract and display an isosurface of some data set (could be tailored
towards the teacher's and student's interests/application areas)
Discuss limitations of these methods
Use visualization software to complete a volumetric rendering
Descriptors:
Discuss direct volumetric rendering (raycasting and texture mapping) and its
advantages/disadvantages vs. surface rendering
Discuss segmentation/classification and transfer functions
Discuss and illustrate how to use a system (VTK, AVS, etc.) to do volumetric rendering)
Using the system, visualize a data set using raycasting
Using the system, visualize a data set using texture mapping
Discuss limitations of this method
Utilize visualization software to visualize a vector dataset
Descriptors:
Discuss vector data
Discuss different methods for vector visualizing (particles, stream ribbons, vector
glyphs, etc.)
Discuss the use of structured grid types: (ir)regular, cylindrical, spherical
Discuss application areas for vector visualization (air flow, etc.)
Using a system (VTK, AVS, etc.), visualize a vector data set
Discuss limitations of this method
Explore examples of image processing
Descriptors:
Discuss basic steps and goals in image processing
Discuss variety of data sources of images and how they can be represented
Discuss algorithms used for image processing
Explore examples of image processing (e.g., noise reduction, image enhancement,
feature extraction etc)
Discuss challenges and limitations in image processing
Use advanced techniques applied to a real problem
Descriptors:
To be chosen by instructor based on instructor/student interest. Among suggested topics

 17

are:
- visualizing an irregular grid;
- visualizing a data set specific to the area of interest (see 3.2 and 3.3 for specific

examples)
- writing a segmentation tool
- implementing a visualization algorithm from scratch (such as marching cubes or

raycasting)
Examine SciVis problems for Biological Sciences – "OMICS" applications
Descriptors:
Examine different problems existing in ‘OMICS sciences that require visualization
solution (overview)
Discuss challenges of representing biomedical/biological data (i.e., representing protein
structure or genomic sequence with all their attributes as a visual metaphor)
Discuss challenges associated with visualization of scattered data such as text
information and bioinformatics data (e.g., phylogenetic information)
Gene finding in genomic sequences
- Examine different components of a gene structure
- Visualize genomic structure of an individual gene
- Build a comparison between genomic features from several genomes

o Visualize (and examine) similarities and differences
o Discuss goal-dependent options of parsing the results to be explored

elsewhere (e.g., as plain text, XML-marked)
Protein folding and protein structure prediction

o Discuss the differences between protein folding and protein structure
prediction

o Explore different methods used in protein folding and structure prediction
o Apply different methods of protein structure prediction and compare the

results
o Construct, visualize and examine structure-based protein alignment

Biological networks (e.g., protein-protein or protein-DNA interaction networks)
Visualization of various types of expression data

o Discuss and contrast different types of expression data – e.g., microarray
gene expression data, protein expression data

o Discuss different visualization (and analyses) techniques used for expression
data

o Apply (and compare outcomes) hierarchical clustering and k-means
clustering to the same gene microarray expression data

o Discuss pros and cons of different clustering methods, their shortcomings,
and ways to access the quality of clusters

Discuss potential applications of SciVis techniques in biomedical and drug design fields
Utilize MATLAB to implement/solve the above problems
Explore SciVis techniques in BioMedical applications
Descriptors:
Explore a variety of biomedical applications of SciVis to explore large datasets such as
MRI and confocal microscopy data
Overview of volume visualization techniques in biomedical problems
Examine and different ways MRI (Magnetic Resonance Imaging) data can be visualized
(e.g., 2-D image versus isocontour slices).
Discuss potential applications (interpretation) of each of the techniques.
Utilize software tools (MATLAB, VTK) to apply the techniques above

 18

 19

Appendix B
Minor in Computational Science and Engineering
Primary Contacts: Bruce W. Weide (weide.1, 292-1517) and Steven Gordon (sgordon@osc.edu, 2-6082)

1. Fiscal Unit / Academic Organization
Department of Computer Science and Engineering (1435)

2. Administering College / Academic Group
College of Engineering / Department of Computer Science and Engineering (CSE)

3. Co-administering College / Academic Group
Not applicable

4. Semester Conversion Designation
c. Converted with minimal changes to program goals and/or curricular requirements

5. Program / Plan Name
Minor in Computational Science and Engineering

6. Type of Program
Undergraduate minor

7. Program Plan Code Abbreviation
TBD

8. Degree Title
Not applicable

9. Specializations / Sub-plans
Not applicable

10. Program Learning Goals
Not required at this time for minors

11. List of Semester Courses
See Attachment #1: Computational Science and Engineering Minor Proposed Program Requirements.

12. Program Rationale
The Computational Science and Engineering Minor was approved in Sp 2010. As the program has just
commenced, minor changes are proposed along with those necessitated by converting course requirements to
semesters.
The basic requirements of this minor program are guided by a document associated with the Ralph Regula
School of Computational Science, which was established as a “virtual school” by the Ohio Board of Regents in
December 2005. RRSCS is a run from the Ohio Supercomputer Center and does not offer degrees of its own
but serves to organize and coordinate statewide efforts to integrate computational science programs into the
curricula at participating institutions, one of which is OSU. Computational science and engineering is an
interdisciplinary field with expertise scattered among different departments and different institutions—though
OSU offers expertise and coursework in all these areas. The intention of RRSCS is to sponsor shared, inter-
institutional programs that take advantage of the existing expertise, make it widely available, and limit the
duplication of effort and expense where possible. For completeness, and to answer any questions that might

 20

arise about this unusual aspect of this program, the full proposal for the just-approved minor program is
provided as Attachment #4. The only change in the previously approved minor is to make the optimization
course an elective rather than a requirement. This keeps the total credit hours upon conversion to semesters
within the desired range.

13. Quarters Curriculum Advising Sheet
See Table 1: Current Advising Sheet, which shows the minor program proposal as previously approved as in the
original document (Attachment #4) and presently serves as the Computational Science and Engineering Minor
Advising Sheet.

14. Semesters Curriculum Advising Sheet
See Table 2 and Attachment #3: Proposed Advising Sheet.

15. Curricular Map
Not applicable

16. Associated Pre-Major or Area of Interest
Not applicable

17. Credit-Hour Changes
 Number of qtr-

cr-hrs in current
program1

Calculated
result for 2/3 of
current qtr-cr-
hrs

Number of sem-
cr-hrs required
for proposed
program

Change in cr-
hrs

Total minimum cr-hrs
required for completion of
program 22 14.7 18 +3.3
Required cr-hrs offered by
the unit 4 - 19 2.7 - 12.7 3 - 13 –0.7 - +0.3
Required cr-hrs offered
outside of the unit 3 - 18 3.0 - 15.0 3 - 16 +3.0 - +4.0
Required prerequisite cr-hrs
not included above 15 10.0 10

0.0

18. Rationale for Significant Change in Credit Hours
While none of the cr-hr changes exceeds 4.0, a brief explanation is in order, particularly for the first line:
minimum total cr-hrs. Simply because of the “breakage” in cr-hrs as OSU courses are converted to semesters in
different units in the best interest of majors in those units (i.e., without regard to the impact on this
interdisciplinary minor program), meeting the overall coverage requirements of the RRSCS curriculum entails
an increase in the minimum from an equivalent of 14.7 sem-cr-hrs to 18 sem-cr-hrs. We view this as still a very
reasonable minor that will remain accessible to interested students in the sciences and engineering.

19. Transition Policy
No student who begins the Computational Science and Engineering Minor under quarters will have
progress toward completion impeded by the transition to semesters. Computational Science and
Engineering Minor requirements beginning Summer 2012 will be those in force for students under

1 Numbers in this column are computed by considering the OSU courses listed in Attachment #2 that would be needed
to satisfy the current requirements in all competency areas of the minor coursework. The official overall minimum
for the minor is listed as 20 cr-hrs rather than 22 cr-hrs, as some courses at other institutions might qualify as
substitutes for these OSU courses.

 21

semesters; but every quarter-credit-hour that would have counted toward a Computational Science and
Engineering Minor under the quarter-based program will count (as 2/3 of a semester-credit-hour)
toward the requirements for the semester version. If necessary, a revision of specific requirements will
be worked out for any Computational Science and Engineering Minor student who is caught in the
transition, in consultation with the CSE Associate Chair.

— Xiaodong Zhang, CSE Department Chair

20. Assessment Practices
Not applicable

 22

Table 1: Requirements for Undergraduate Computational Science Minor
Current Advising Sheet (Quarter Version)
Topic Courses Required/Elective
Prerequisites
Calculus Math 151, 152, 153 (or

equivalent, e.g. Math 161,
162 or Math H190, H191)

Core Courses
Simulation and Modeling One of: CEG 640, CSE

778, ISE 521, 704, ME
785, MSE 533

Required

Programming and
Algorithms

One of: CSE 202, CSE
294P, CSE 221

Required

Numerical Methods One of: AAE 581, CEG
406, CSE 541, ECE 715,
Math 606, Math 607, ME
250

Required

Optimization CEG 776, ECE 759, ISE
522, ME 761, MSE 600

Required

Discipline Specific Courses
Capstone
Research/Internship
Experience (3 credits
minimum)

CE 660, CSE 699 or
H783,ME 564 or 565,
MSE 695 or other
approved individualized
research credits

Required

Discipline-specific
Computationally oriented
Course

CSE 630, 655, 660, 670,
675, 680, Chem 644, MSE
756, Phys 780

Required

Elective: Choose at least one course from the following
Differential Equations
and Discrete Dynamical
Systems

Math 255, Math 415,
Math 568, Math 571

Elective

Parallel Programming CSE 621 Elective

Scientific Visualization CSE 694L Elective

 23

Table 2: Requirements for Undergraduate Computational Science Minor (Semester Version)
 Topic Course Credit

Hours Quarters offered Required/
Elective

Prerequisites Calculus
MATH 1151.xx 5 Au, Wi, Sp

MATH 1152.xx or Math 1172 5 Au, Wi, Sp

Core Courses

Simulation and Modeling
(One of Courses)

CEG 640 4 Au

Required

ISE 7200 3 Au

ISE 5100 3 Au, Sp

ME 5372 3 Au

MATSCEN 4321 3 Au

Programming and Algorithms
(One of Courses)

CSE 1222 3 Au, Sp

Required CSE 1221 2 Au, Sp

CSE 2221 4 Au, Sp, Su

Numerical Methods
(One of Courses)

AERO 2581 N/A N/A

Required

CEG (CIVILEN) 2090 1 Au, Sp

CSE 5361 3 Au, Sp

ECE 5510 3 Au

MATH 3607 3 Sp

MECHENG 2850 3 Au, Sp

Discipline Specific
Courses

Capstone Research/Internship
Experience (minimum 3 credits)

CIVILEN 4000.01 2 Au, Sp

Required
CSE 4998, or MECHENG

4901.01, or 4902.01, or other
approved individualized research

credits

3-5 Au, Sp, May, Su, May
+ Su/ Au, Sp/Au, Sp

Discipline-specific
Computationally oriented Course

CSE 3521 3 Au, Sp

Required

CSE 3341 3 Au, Sp

CSE 3431 N/A TBD

CSE 3241 3 Au, Sp

CSE 2331 3 Au, Sp, Su

CSE 5331 3 Au, Wi, Sp

CHEM 644 3 Au

NATSEN 6766 N/A N/A

PHYS 780 N/A N/A

Elective: Choose at least
one course from the

following (3 credits total
required)

Differential Equation and Discrete
Dynamical Course

MATH 2255 3 Su, Au, Wi, Sp

Elective
MATH 2415 3 Su, Au, Wi, Sp

MATH 2568 3 Su, Au, Wi, Sp

Parallel Programming CSE 5441 3 Au Elective

Scientific Visualization CSE 5544 1-5 Su, Au, Wi, Sp Elective

Optimization

CEG (CIVILEN) 4760 3 Sp

Elective
ECE 5759 3 Au

ISE 3200 3 Au, Sp

MATSCEN 4181 3 Au

 Total minimum credit hours: 18

 24

Minor Program Form
College of Arts and Sciences

Name

Student ID Number Name .#

Minor Computational Science

This form should be submitted to your college or school office.

 College/School of enrollment Major

 Expected date of graduation

Have you filed a degree application in your college office? Yes □ No □

Computational Science minor program guidelines

• The minor in computational science consists of a minimum of 18 credit hours of course work: A
simulation and modeling course Computer Science and Engineering ((MATH 1157, CSE) 2021,
ISE 5100, ME 5372, or MATSCEN 4321), either CSE 1221 or 2221, a numerical methods course
(CSE 5361, ECE 5510, MATH 3607, MATH 3401, AERO 3581, MATH 5401,or ME 2850), a
capstone research or internship using an approved departmental research course designation, one
discipline specific computational modeling course (CHEM 5440, MICROBIO 5161H, CSE 3521,
CSE 3341, BMI 5730, MATH 5651, PHYS 6810, LING 5801, LING 5802, ECON 4050, ECON
5001, GEOG 5221, PSYCH 5608, PSYCH 5609, EARTHSC 5642, or PSYCH 5618) and one
elective (MATH 2255, MATH 2415, MATH 2568, CSE 5441, CSE 5544, CEG 4760, ECE5759, ISE
3200, or MATSCEN 4181).

• Minimum C– for a course to be listed on the minor.
• Of these courses, at least 12 credit hours must be at the 2000 level or above.
• Minimum 2.00 cumulative point-hour ratio required for the minor.
• An overlap of up to 6 hours is allowed with GE courses

Course Hours Final Grade

Total Hours Original □ Revision □

Signature of Advisor Date

Please Print Name of Advisor

Academic Unit Campus Telephone and/or E-Mail

	ProgramRequest_1023694
	minorprogramproposalarts_v5CA rev2
	Computational Science Minor Program Guidelines
	Filing the minor program form The minor program form must be filed at least by the time the graduation application is submitted to a college or school counselor. You should plan to file the form as soon as you have decided to pursue the minor.

	Overview of computer graphic concepts
	Use visualization software to display an isosurface
	Use visualization software to complete a volumetric rendering
	Descriptors:
	Utilize visualization software to visualize a vector dataset
	Descriptors:
	Explore examples of image processing
	Descriptors:
	Descriptors:
	Appendix B
	Minor in Computational Science and Engineering
	1. Fiscal Unit / Academic Organization
	2. Administering College / Academic Group
	3. Co-administering College / Academic Group
	4. Semester Conversion Designation
	5. Program / Plan Name
	6. Type of Program
	7. Program Plan Code Abbreviation
	8. Degree Title
	9. Specializations / Sub-plans
	10. Program Learning Goals
	11. List of Semester Courses
	12. Program Rationale
	13. Quarters Curriculum Advising Sheet
	14. Semesters Curriculum Advising Sheet
	15. Curricular Map
	16. Associated Pre-Major or Area of Interest
	17. Credit-Hour Changes
	18. Rationale for Significant Change in Credit Hours
	19. Transition Policy
	20. Assessment Practices

	Minor Program Form -compscienceCArev1
	Minor Program Form
	Course Hours Final Grade

